基本描述
2-(羥甲基)哌啶-1-甲酸叔丁酯的CAS號(hào)是157634-00-9,分子式是C11H21NO3,分子量是215.29,熔點(diǎn)是74-78°C,沸點(diǎn)是308.0±15.0°C(Predicted),密度是1.059±0.06g/cm3(Predicted),以及酸度系數(shù)(pKa)是15.08±0.10(Predicted)。2-(羥甲基)哌啶-1-甲酸叔丁酯醫(yī)藥中間體可用于多肽合成、伐瑞拉迪、安普那韋、他汀類(lèi)中間體、醇鎂化合物等[1-2]。
圖1 2-(羥甲基)哌啶-1-甲酸叔丁酯的結(jié)構(gòu)式。
合成
圖2 2-(羥甲基)哌啶-1-甲酸叔丁酯的合成路線(xiàn)[3]。
將酯304(5 g,19.5 mmol)溶解于干乙醇(50 mL)中,并置于N2氣氛下的冰浴中。非常小心地添加NaBH4(2.21 g,58.4 mmol)和LiCl(0.12 g,2.92 mmol)。混合物回流8小時(shí)。在此之后,添加1 N HCl,直到pH為7。用EtOAc(3 x 30 mL)萃取混合物,并用MgSO4干燥。去除溶劑后,殘留物在CH2Cl2(15 mL)中再次溶解,并通過(guò)過(guò)濾去除沉淀物。從濾液中除去溶劑,并在柱層析后獲得純度為33%的固體化合物2-(羥甲基)哌啶-1-甲酸叔丁酯。mp:64-66攝氏度。合成路線(xiàn)如圖2所示。
圖3 2-(羥甲基)哌啶-1-甲酸叔丁酯的合成路線(xiàn)[4-5]。
方法一:向2-哌啶基甲醇(2.30 g,20 mmol)存于CH3CN(20 mL)中的溶液中添加Boc2O(4.88 mL,21.00 mmol)。將混合物在25℃下攪拌20 h。將混合物濃縮以得到標(biāo)題化合物。白色蠟狀固體2-(羥甲基)哌啶-1-甲酸叔丁酯,收率3.83克,89%。LCMS(ES)m/z 216(m+H)+;1H核磁共振波譜(400 MHz,二甲基亞砜-d6)δppm 1.19-1.32(m,1 H)1.38(s,9 H)1.43-1.52)。合成路線(xiàn)如圖3所示。
方法二:將三乙胺(23.34 mL,156.42 mmol)逐滴添加到2-哌啶甲醇(5.00 g,43.45 mmol)存于二氯甲烷(150 mL)中的溶液中,并在完全添加后將溶液攪拌1小時(shí)。然后將二碳酸二叔丁酯(Boc2O,11.38 g,52.14 mmol)存于二氯甲烷(20 mL)中的溶液逐滴添加到溶液中,并在完全添加后將其攪拌額外小時(shí)。將反應(yīng)物倒入50 mL水中。用水萃取有機(jī)相,用二氯甲烷(220 mL)萃取水相。用鹽水洗滌結(jié)合的有機(jī)相,經(jīng)MgSO4干燥并過(guò)濾,并在真空中除去溶劑。使用硅膠和己烷/EtOAc(1:1)通過(guò)柱層析純化粗產(chǎn)物,得到白色固體乙醇4(7.865 g,84%)。由于存在與氨基甲酸酯相關(guān)聯(lián)的旋轉(zhuǎn)體,1H NMR中的幾個(gè)峰出現(xiàn)展寬。2-(羥甲基)哌啶-1-甲酸叔丁酯(4),收率7.865 g,84%。Mp 75-77°C(升Mp 74-78°C)。[12] 1H核磁共振(300 MHz,CDCl3)δ:4.29(1H,m),3.94(1H、2x br s),3.81(1H;dd,J=10.8,9.1 Hz,CH2OH),3.61(1H,dd,J=10.5,5.9 Hz,CH2 OH)、2.87(1H(br t)、2.12(1H)、br s)、1.53-1.73(6H、m)、1.46(9H,s,tBu)。13C核磁共振(75 MHz,CDCl3):156.6,80.0,61.9,52.7,40.1,28.6,25.5,25.4,19.8。紅外光譜數(shù)據(jù)如下:3418,2934,1668 cm-1。M/S(EI)M/z:215(M+),184,142,128(100%),84,57。合成路線(xiàn)如圖3所示。
應(yīng)用
2-(羥甲基)哌啶-1-甲酸叔丁酯及其衍生物具有良好的生物活性,不僅可用于合成GABA 攝入抑制劑、抗腫瘤藥,還可以合成生長(zhǎng)激素促分泌素、消炎鎮(zhèn)痛藥物、心血管藥物、促智藥物、抗流感病毒藥物和骨疾病藥物等[6-9]。
儲(chǔ)存方法
2-(羥甲基)哌啶-1-甲酸叔丁酯應(yīng)該儲(chǔ)存于陰涼、通風(fēng)的庫(kù)房。遠(yuǎn)離火種、熱源。庫(kù)溫不宜超過(guò)37℃。保持容器密封。2-(羥甲基)哌啶-1-甲酸叔丁酯應(yīng)與氧化劑、酸類(lèi)、堿類(lèi)分開(kāi)存放,切忌混儲(chǔ)[10-11]。采用防爆型照明、通風(fēng)設(shè)施。禁止使用易產(chǎn)生火花的機(jī)械設(shè)備和工具。儲(chǔ)區(qū)應(yīng)備有泄漏應(yīng)急處理設(shè)備和合適的收容材料。
參考文獻(xiàn)
[1] M. Vimala, S. Stella Mary, R. Ramalakshmi, S. Muthu, A. Irfan, Computational prediction of polar and non-polar solvent effect on the electronic property of N-BOC- Piperidine-4-Carboxylic acid, J. Mol. Liq. 341 (2021) 117222.
[2] M. Vimala, S. Stella Mary, R. Ramalakshmi, S. Muthu, R. Niranjana Devi, A. Irfan, Quantum computational studies on optimization, donor-acceptor analysis and solvent effect on reactive sites, global descriptors, non-linear optical parameters of Methyl N-Boc-piperidine-3-carboxylate, J. Mol. Liq. 343 (2021) 117608.
[3] T. Jin, L. Xu, P. Wang, X. Hu, R. Zhang, Z. Wu, W. Du, W. Kan, K. Li, C. Wang, Y. Zhou, J. Li, T. Liu, Discovery and Development of a Potent, Selective, and Orally Bioavailable CHK1 Inhibitor Candidate: 5-((4-((3-Amino-3-methylbutyl)amino)-5-(trifluoromethyl)pyrimidin-2-yl)amino)picolinonitrile, J. Med. Chem. 64(20) (2021) 15069-15090.
[4] A.A. Pise, A.P. Ingale, N.R. Dalvi, Ultrasound promoted environmentally benign, highly efficient, and chemoselective N-tert-butyloxycarbonylation of amines by reusable sulfated polyborate, Synth. Commun. 51(24) (2021) 3768-3780.
[5] A.P. Ingale, D.N. Garad, D. Ukale, N.M. Thorat, S.V. Shinde, Thiamine hydrochloride as a recyclable organocatalyst for the efficient and chemoselective N-tert-butyloxycarbonylation of amines, Synth. Commun. 51(24) (2021) 3791-3804.
[6] M.C. Jewett, J. Lee, J.S. Moore, K.J. Schwarz, Expanding the chemical substrates for genetic code reprogramming to include long chain carbon and cyclic amino acids, Northwestern University, USA; The Board of Trustees of the University of Illinois . 2021, p. 255pp.
[7] Y. Cao, Y. Huang, L. He, Sustainable Route Toward N-Boc Amines: AuCl3/CuI-Catalyzed N-tert-butyloxycarbonylation of Amines at Room Temperature, ChemSusChem 15(4) (2022) e202102400.
[8] S.H. Lee, J.H. Ryu, J.M. Ahn, Y.R. Choi, H.H. Lee, M.Y. Jang, Y.J. Woo, H. Kim, J.Y. Kim, J.Y. Park, Amide compound for androgen receptor degradation, and pharmaceutical use thereof, Ubix Therapeutics, S. Korea . 2022, p. 214pp.
[9] W. Lee, D. Kim, S. Seo, S. Chang, Photoinduced α-C-H Amination of Cyclic Amine Scaffolds Enabled by Polar-Radical Relay, Angew. Chem., Int. Ed. 61(25) (2022) e202202971.
[10] G. Kang, S. Han, Synthesis of Dimeric Securinega Alkaloid Flueggeacosine B: From Pd-Catalyzed Cross-Coupling to Cu-Catalyzed Cross-Dehydrogenative Coupling, J. Am. Chem. Soc. 144(20) (2022) 8932-8937.
[11] C. Yang, L. Yao, L. Guo, X. Qi, Preparation of N-α aryl substituted nitrogen-containing heterocyclic compounds by photocatalysis, Harbin Institute of Technology, Shenzhen, Peop. Rep. China . 2022, p. 13pp.