基本描述
4-氯-3-氟苯甲酸的CAS號是403-17-8,分子式是C7H4ClFO2,分子量為174.56。熔點是190-192°C,沸點是290.9±20.0°C(Predicted),密度是1.477±0.06g/cm3(Predicted)以及酸度系數(shù)(pKa)是3.63±0.10(Predicted)。4-氯-3-氟苯甲酸易溶于甲醇和二甲基亞砜。4-氯-3-氟苯甲酸是一種重要的精細化工中間體,可用于醫(yī)藥產(chǎn)品、生物工程、活性染料、聚酯化合物及農(nóng)藥等的合成[1-2]。
圖1 4-氯-3-氟苯甲酸的結(jié)構(gòu)式。
合成
圖2 4-氯-3-氟苯甲酸的合成路線[3]。
將亞氯酸鈉(17g)在冰冷卻下分批加入到由4-氯-3-氟苯甲醛(10g)、氨基磺酸(18g)、叔丁醇(50ml)和水(50ml組成的混合溶液中,并將混合物攪拌4天,同時將系統(tǒng)溫度逐漸升高至室溫。用乙酸乙酯稀釋反應(yīng)混合物,用水、1N鹽酸和飽和氯化鈉水溶液洗滌。用無水硫酸鈉干燥所得有機層,減壓蒸餾出溶劑后,將所得殘余物從二異丙醚和己烷的混合溶劑中重結(jié)晶,得到標題化合物4-氯-3-氟苯甲酸(11.2g)。1H-NMR(DMSO-D6)δ:7.72(1H,dt,J=8.3,1.5Hz),7.77(1H、dt,J=8.2,1.6Hz),7.82(1H,dt、J=9.7,1.5 Hz),13.45(1H,s)。合成路線圖如圖2所示。
圖3 4-氯-3-氟苯甲酸的合成路線[4]。
在O2氣氛下,將反應(yīng)物(0.1mmol,9.2mg)、CeCl3(5mol%,1.2mg),CCl3CH2OH(20mol%,20μL(1M CH3CN溶液))、CH3CN(2ml)添加到帶有攪拌棒的25ml石英玻璃管中。將管垂直于400 nm LED燈(10 W)。在60°C下,在藍光照射下攪拌混合物48小時。如薄層色譜所示,反應(yīng)完成。加入乙酸乙酯和水提取三次。減壓濃縮有機相得到4-氯-3-氟苯甲酸。合成路線圖如圖3所示。
圖4 4-氯-3-氟苯甲酸的合成路線[5]。
向反應(yīng)釜中加入式(X)化合物和氯化亞砜,然后加入DMF,攪拌升溫至70°C反應(yīng)1.5h, 反應(yīng)完成后降至室溫,旋干后用氯仿溶解,降溫至5 °C滴加30%氨水,滴加完成后穩(wěn)定30min, 分層,取有機相加干燥劑,過濾,濾液旋干,然后加入三氯氧磷,攪拌升溫至70°C反應(yīng)1.5h, 然后降溫至15°C旋干,加入二乙醚與水的混合液,降溫至10°C并攪拌30min,分層取有機相,用飽和碳酸氫鈉水溶液和飽和氯化鈉水溶液洗滌,然后加入干燥劑,過濾,旋干,得到4-氯-3-氟苯甲酸。合成路線圖如圖4所示。
應(yīng)用
4-氯-3-氟苯甲酸是重要的精細化工中間體,由于其分子結(jié)構(gòu)中活性位點較多,可廣泛應(yīng)用于醫(yī)藥、農(nóng)藥、染料、生物工程、聚酯化合物等的合成[6-7]。我國從20世紀80年代開始研究開發(fā) 4-氯-3-氟苯甲酸,除農(nóng)藥領(lǐng)域有所應(yīng)用外,醫(yī)藥等其他領(lǐng)域均處于起步階段,且生產(chǎn)規(guī)模較小,產(chǎn)能低。隨著精細化工產(chǎn)業(yè)的日益發(fā)展,4-氯-3-氟苯甲酸作為新型產(chǎn)品,應(yīng)用范圍不斷擴大,需求量逐年增長,市場缺口越來越大。因此,開發(fā)并優(yōu)化4-氯-3-氟苯甲酸的合成工藝,提高產(chǎn)能具有重要意義[8-9]。此外,在新型活性染料開發(fā)過程中,染料的提升力,耐水洗牢度一直是研究的重點和難點。4-氯-3-氟苯甲酸分子結(jié)構(gòu)中含有強大的吸電子基團,為分子提供了良好的偶合活性,可以作為偶氮染料的一種偶合組分,在合成活性染料方面有全新的應(yīng)用[10]。4-氯-3-氟苯甲酸還可用于合成具有三腳架構(gòu)型的多吡啶類化合物以及高度支化聚合物等,在特殊功能材料等領(lǐng)域有良好的應(yīng)用前景。具有三腳架構(gòu)型的多吡啶類化合物通過氮的配位鍵、氫鍵、芳環(huán)與金屬離子配位構(gòu)建出結(jié)構(gòu)新穎的配合物[11-12]。此外,該類化合物的側(cè)鏈可自由翻轉(zhuǎn)形成大小合適的空腔,能夠與不同的客體結(jié)合,從而可以制備出具有特殊性能的功能材料[13]。
參考文獻
[1] M. Altman, D.A. Candito, A.H. Christian, O. Di Pietro, M. Lu, P. Lui, U.F. Mansoor, K.M. Mennie, A.J. Musacchio, A. Palani, M.H. Reutershan, D.M. Shaw, S. St-Gallay, Cyclic cyanoenone derivatives as modulators of Keap1 and their preparation, Merck Sharp & Dohme Corp., USA; MSD R&D Innovation Centre Limited . 2022, p. 391pp.
[2] E.Y. Canales, W.K. Chang, L.P. Debien, P. Jansa, J.A. Loyer-Drew, L.P. Martinez, S. Perreault, G.B. Phillips, H.-J. Pyun, R.D. Saito, M.S. Sangi, A.J. Schrier, M.E. Shatskikh, J.G. Taylor, J.A. Treiberg, J.J. Van Veldhuizen, Preparation of macrocyclic bis-2,2'-azaindole derivatives as inhibitors of peptidylarginine deiminases, Gilead Sciences, Inc., USA . 2021, p. 1052pp.
[3] A.G. Cole, B.D. Dorsey, B.J. Dugan, Y. Fan, S.G. Kultgen, E.F. Mesaros, M.J. Sofia, Preparation of substituted (phthalazin-1-ylmethyl)ureas, N-(phthalazin-1-ylmethyl)amides, and analogues thereof for treating HBV and/or HDV infections, Arbutus Biopharma Corporation, Can. . 2021, p. 277pp.
[4] A.G. Cole, B.D. Dorsey, B.J. Dugan, Y. Fan, S.G. Kultgen, E.F. Mesaros, M.J. Sofia, Preparation of substituted isoquinolinylmethyl amides, analogues thereof for treating or preventing HBV and/or HDV infections, Arbutus Biopharma Corporation, Can. . 2021, p. 313pp.
[5] A.G. Cole, B.D. Dorsey, B.J. Dugan, Y. Fan, S.G. Kultgen, E.F. Mesaros, M.J. Sofia, Preparation of substituted tricyclic amides and analogs thereof, and methods using same, Arbutus Biopharma Corporation, Can. . 2021, p. 769pp.
[6] L.M. Delgado Oyarzo, G.A. Ureta Diaz, B. Pujala, D. Panpatil, S. Bernales, S. Chakravarty, Cycloalkylamine derivatives and related compounds as inhibitors of integrated stress response pathway and their preparation, Praxis Biotech LLC, USA . 2020, p. 395pp.
[7] K.A. Martin, C. Sidrauski, M.J. Dart, K.J. Murauski, J.T. Randolph, L. Shi, R.C. Smith, Y. Tong, X. Xu, H. Benelkebir, K.K. Chohan, S.J. Edeson, S. Schwenk, K.A. Starbuck, Preparation of heterocyclic compounds as modulators of the integrated stress pathway, Calico Life Sciences LLC, USA; AbbVie Inc.; Sygnature Discovery Limited . 2022, p. 708pp.
[8] K.A. Martin, C. Sidrauski, L. Shi, K.J. Murauski, X. Xu, Y. Tong, J.T. Randolph, M.J. Dart, H. Benelkebir, S. Edeson, K. Starbuck, Preparation of substituted cycloalkanecarboxamides as modulators of the integrated stress pathway, Calico Life Sciences LLC, USA; Abbvie Inc.; Sygnature Discovery Limited . 2020, p. 447pp.
[9] D. Meibom, Y. Cancho Grande, P. Wasnaire, S. Johannes, K. Beyer, T. Freudenberger, D. Brockschnieder, D. Zubov, D. Menshykau, B. Macdonald, Y. Xing, N. Elowe, G. Sanchez, Preparation of substituted hydantoinamides as ADAMTS7 antagonists, Bayer Aktiengesellschaft, Germany; Broad Institute . 2021, p. 556pp.; Chemical Indexing Equivalent to 175:47731 (WO).
[10] D. Meibom, Y. Cancho Grande, P. Wasnaire, S.A.L. Johannes, K. Beyer, T. Freudenberger, D. Brockschnieder, D. Zubov, D. Menshykau, T. Krainz, B. Macdonald, Y. Xing, N. Elowe, G. Sanchez, Preparation of substituted hydantoinamides as ADAMTS7 antagonists, Bayer Aktiengesellschaft, Germany; The Broad Institute, Inc. . 2021, p. 689pp.; Chemical Indexing Equivalent to 175:47728 (EP).
[11] N. Papaioannou, J.M. Travins, S.J. Fink, J.M. Ellard, A. Rae, Imidazopyridines as plasma kallikrein inhibitors and uses and preparation thereof, Charles River Discovery Research Services UK Limited, UK; BioDuro LLC; Shire Human Genetic Therapies, Inc. . 2021, p. 248 pp.
[12] S. Vendeville, P.J.-M.B. Raboisson, Synthesis of thiomorpholine dioxide compounds for treating hepatitis B viral infections, Aligos Therapeutics, Inc., USA . 2020, p. 179pp.
[13] C.-C. Wang, G.-X. Zhang, Z.-W. Zuo, R. Zeng, D.-D. Zhai, F. Liu, Z.-J. Shi, Visible-light-induced deep aerobic oxidation of alkyl aromatics, ChemRxiv (2021) 1-9.