Identification | More | [Name]
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) | [CAS]
155090-83-8 | [Synonyms]
PEDOT/PSS PEDT/PSS POLY(3,4-ETHYLENEDIOXYTHIOPHENE)/POLY (STYRENESULFONATE) POLY(3,4-OXYETHYLENEOXYTHIOPHENE)/POLY(STYRENE SULFONATE) POLY(STYRENESULFONATE)/POLY(2,3-DIHYDROTHIENO(3,4-B)-1,4-DIOXIN) poly(3,4-ethylenedioxythioophene)poly(styrenesulfonate)aq.dispersion Ethenylbenzenesulfonic acid homopolymer compound with 2,3-dihydrothieno[3,4-b]-1,4-dioxin homopolymer POLY(STYRENESULFONATE)/POLY(2,3-DIHYDRO- POLY(STYRENESULFONATE)/POLY(2,3-DIHYDT& PEDOT/PSS, Poly(2,3-dihydrothieno-1,4-dioxin)-poly(styrenesulfonate) poly(3,4-ethylenedioxythioophene) | [EINECS(EC#)]
203-572-1 | [Molecular Formula]
(C8H8O3S)x?x(C6H6O2S)x | [MDL Number]
MFCD02100138 | [MOL File]
155090-83-8.mol |
Hazard Information | Back Directory | [Chemical Properties]
Dark blue liquid | [Application]
PEDOT:PSS is the subject of a considerable amount of research, and is used for a range of applications within thin-film electronic fabrication. This include perovskite photovoltaics, organic photovoltaics, organic light emitting diodes, transparent conductors, organic electrochemical transistors, flexible electronics, thermoelectric generators, supercapitors, and energy storage | [Description]
AI 4083, PH 1000, HTL Solar and HTL Solar 3 for thin-film electronic fabrication | [Uses]
PEDOT:PSS can be used as an electrode material that forms a layered structure with a high mobility for charge carriers. It can be used for a wide range of energy based applications, such as organic photovoltaics (OPVs), dye sensitized solar cells (DSSCs), organic light emitting diodes (OLEDs) and supercapacitors. | [General Description]
A conducting polymer such as poly(3,4-ethylenedioxythiophene) doped with poly(styrene sulfonate) anions (PEDOT/PSS) is widely used in various organic optoelectronic devices. PEDOT: PSS is a blend of cationic polythiopene derivative, doped with a polyanion. High electrical conductivity and good oxidation resistance of such polymers make it suitable for electromagnetic shielding and noise suppression. Thus, the polymer film was found to possess high transparency throughout the visible light spectrum and even into near IR and near UV regions, virtually 100% absorption from 900-2,000 nm. No absorption maximum from 400-800 nm. Impact of small electric and magnetic fields on the polymer was studied. | [References]
[1] Kurushima Y, et al. Effect of PEDOT:PSS composition on photovoltaic performance of PEDOT:PSS/n-Si hybrid solar cells. Japanese Journal of Applied Physics, 2021; 60: 091001. [2] Fan Z, et al. Thermoelectric Properties of PEDOT:PSS. Advanced Electronic Materials, 2019; 5: 1800769. [3] Volkov A, et al. Understanding the Capacitance of PEDOT:PSS. Advanced Functional Materials, 2017; 27: 1700329.
|
Safety Data | Back Directory | [Hazard Codes ]
Xi | [Risk Statements ]
R36/38:Irritating to eyes and skin . | [Safety Statements ]
S26:In case of contact with eyes, rinse immediately with plenty of water and seek medical advice . S36/37/39:Wear suitable protective clothing, gloves and eye/face protection . | [WGK Germany ]
1
| [HS Code ]
39039000 |
Questions And Answer | Back Directory | [Applications]
Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), also named PEDOT: PSS, belongs to organic/polymer TE materials and has the advantages of water-processable, thermally stable, and can be highly conductive[1]. The charge storage of PEDOT:PSS in supercapacitors is due to redox reactions[2]. It is commonly included as an electroactive conductor in various organic devices(supercapacitors, displays, transistors, and energy‐converters). For example, spin-coating of the PEDOT:PSS water dispersion on n-type silicon wafer[3]. |
|
|