Abstract
The in situ synthesis is reported of noble metal nanoparticlesvia3-glycidoxypropyltrimethoxysilane mediated reduction of 3-aminopropyltrimethoxysilane treated metal salts during sol–gel processing. The method described involves the synthesis of uniform spherical nanoparticles of gold, silver and palladium with controlled size that can be directly utilized for thin film preparation. A detailed study of the synthesis and application of gold nanoparticles to the electrochemical detection of hydrogen peroxide was carried out and reveals that the amplification of hydrogen peroxide sensing is size-dependent. In addition, these nanoparticles exhibit excellent compatibility towards composite preparation. As an example, a nanocomposite with Prussian Blue (PB) is synthesized and found to be useful for the fabrication of chemically modified electrodes (CME). The resulting CME shows dramatic improvement in the electrochemistry of PB with gradual enhancement in electrocatalytic efficiency towards hydrogen peroxide sensing. The nanocomposite is used to study the direct and horseradish peroxidase (HRP)-catalyzed reduction of hydrogen peroxide. The results recorded for hydrogen peroxide analysis show an improvement in sensitivity and limit of detection on decreasing the size of gold nanoparticles in all cases.