Cobalt molybdate hollow spheres decorated graphitic carbon nitride sheets for electrochemical sensing of dimetridazole
Abstract
In the present work, a cobalt molybdate (CoMoO4) hollow spheres-incorporated graphitic carbon nitride (g-CN) composite is prepared for the electrochemical detection of dimetridazole (DZ). The synergistic effect between the hollow-structured CoMoO4 and g-CN nanosheets facilitates the transportation of electrons through kinetic barriers, thereby providing a high electrical conductivity with increased electroactive sites. The proposed CoMoO4@g-CN-modified electrode displayed a wide linear range (0.001–492.77?μM) and a lower detection limit (LOD: 0.4?nM) for the determination of DZ through the amperometry (i–t) method. In addition, the CoMoO4@g-CN-modified electrode achieved good operational stability, anti-interfering ability (five-fold excess amount of co-interfering compounds) and reproducibility. These results demonstrate the increased electrocatalytic activity of CoMoO4@g-CN modified glassy carbon electrode (GCE) towards the detection of DZ in food samples with satisfactory recovery ranges.