Tricyclohexylphosphine-Catalyzed Cycloaddition of Enynoates with [60]Fullerene and the Application of Cyclopentenofullerenes as n-Type Materials in Organic Photovoltaics
An-Ju Wu, Po-Yen Tseng, Wei-Hsin Hsu, Shih-Ching Chuang*
Abstract
The tricyclohexylphosphine-catalyzed [3 + 2] cycloaddition of (E)-alkyl 5-substituted phenylpent-4-en-2-ynoates with [60]fullerene was studied. This reaction undergoes an initial 1,3-addition of phosphines toward the α-carbons of enynoates. Subsequent cycloaddition of the generated 1,3-dipoles with [60]fullerene and elimination of tricyclohexylphosphines resulted in cyclopentenofullerenes in 20–43% yields. The isolated cyclopentenofullerenes were observed to serve as n-type materials in organic photovoltaics, providing a maximum average power conversion efficiency of 3.79 ± 0.29% upon embedding with P3HT in the active layer.