JavaScript seems to be disabled in your browser. For the best experience on our site, be sure to turn on Javascript in your browser.
Tel: +1-832-696-8203
Email: [email protected]
Worldwide Distributors
In vitro transcription of capped mRNA with modified nucleotides and Poly(A) tail
TSA (Tyramide Signal Amplification), used for signal amplification of ISH, IHC and IC etc.
Separation of phosphorylated and non-phosphorylated proteins without phospho-specific antibody
A convenient and sensitive way for cell proliferation assay and cytotoxicity assay
Protect the integrity of proteins from multiple proteases and phosphatases for different applications.
NLG919 is a novel and orally-bioavailable small-molecule inhibitor of indoleamine 2,3-dioxygenase (IDO) pathway, a crucial pathway involved in allergic inflammation that mediates immunosuppressive effects through metabolization of tryptophan (Trp) to kynurenine and affects differentiation and proliferation of T cells through inducing downstream signaling via GCN2, mTOR and AHR, with values of inhibition constant Ki and half maximal effective concentration EC50 of 7 nM and 75 nM respectively. Due to the established correlation of IDO pathway with various malignancies, the IDO pathway inhibition as well as its desirable pharmacological and biological properties potentiates NLG919 to be used for the treatment of immunosuppression associated with cancer.
Reference
Mario R. Mautino, Firoz A. Jaipuri, Jesse Waldo, Sanjeev Kumar, James Adams, Clarissa Van Allen, Agnieszka Marcinowicz-Flick, David Munn, Nicholas Vahanian, Charles J. Link. NLG919, a novel indoleamine-2,3-dioxygenase (IDO)-pathway inhibitor drug candidate for cancer therapy. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 491. doi:10.1158/1538-7445.AM2013-491
Cell lines
Human and mouse IDO+ pDCs
Preparation method
Limited solubility. General tips for obtaining a higher concentration: Please warm the tube at 37°C for 10 minutes and/or shake it in the ultrasonic bath for a while. Stock solution can be stored below -20°C for several months.
Reaction Conditions
37°C
Applications
NLG919 potently blockes IDO-induced T cell suppression and restores robust T cell responses with an EC50=90 nM. NLG919 also abrogates IDO-induced suppression of antigen-specific T cells (OT-I or pmel-1) in vitro, (ED50=130 nM ) using mouse IDO+ pDCs from tumor-draining lymph nodes.
Animal models
Mice bearing large established B16F10 tumor
Dosage form
NLG919 was dosed either dissolved in the water at 3 mg/mL, plus a daily dose of 6 mg injected via IP, or administered subcutaneously at 1 mg/dose twice a day via injection plus 360 μg/day via an SC osmotic pump.
NLG919 markedly enhances the antitumor responses of naive, resting pmel-1 cells to vaccination with cognate hgp100 peptide plus CpG-1826 in IFA. NLG919 plus pmel-1/vaccine produces a dramatic collapse of tumor size within 4 days of vaccination (~95% reduction in tumor volume compared to control animals receiving pmel-1/vaccine alone without NLG919).
Other notes
Please test the solubility of all compounds indoor, and the actual solubility may slightly differ with the theoretical value. This is caused by an experimental system error and it is normal.
References:
1. Mario R. Mautino, Firoz A et al. NLG919, a novel indoleamine-2,3-dioxygenase (IDO)-pathway inhibitor drug candidate for cancer therapy. [abstract]. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research; 2013 Apr 6-10; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2013;73(8 Suppl):Abstract nr 491.