Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
CAS No. : | 65181-78-4 | MDL No. : | MFCD00144965 |
Formula : | C38H32N2 | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | OGGKVJMNFFSDEV-UHFFFAOYSA-N |
M.W : | 516.67 | Pubchem ID : | 103315 |
Synonyms : |
|
||
UV : | 352 nm (in THF) | ||
FL : | 398 nm (in THF) | Materials Type : | HTM |
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H302-H315-H319-H335-H351-H361 | Packing Group: | N/A |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
85.2% | With sodium t-butanolate;palladium diacetate; 1,3-bis[2,6-diisopropylphenyl]imidazolium chloride; In toluene; at 20 - 130℃;Inert atmosphere; | 3.0 g (30 mmol) of sodium tert-butoxide, 217 mg (0.5 mmol) of IPr-HCl (compound No. 1), 45 mg (0.2 mmol) of palladium(II) acetate, 3.67 g (20 mmol) of 3-methyldiphenylamine, 3.2 g (10 mmol) of 4,4'-dibromobiphenyl and 30 ml of toluene were put into a 50-ml three-neck flask equipped with a stirrer, a condenser tube, a thermometer and a gas-introducing duct, in an argon current at room temperature, and reacted under reflux in an oil bath controlled at a temperature of 130°C for 7 hours. The reaction liquid was cooled to room temperature, then left overnight at room temperature, and 150 ml of methylene chloride was added thereto. The insoluble matter was removed by filtration, and the filtrate was washed twice with 50 ml of water. This was dewatered and dried with 30 g of anhydrous sodium sulfate, and the solvent was evaporated away to give a residue. The residue was purified through column chromatography (carrier, Fuji Silicia's NH silica gel 150 g; eluent, cyclohexane) to give 4.4 g of N,N'-diphenyl-N,N'-di(m-tolyl)benzidine (TPD) (yield 85.2percent). |
51% | In a 100 ml flask purged with a nitrogen atmosphere,30 g of xylene, 7.33 g (40 mmol) of N- (3-methylphenyl) aniline, 0.96 g (40 mmol) of sodium hydride,7.36 g (40 mmol) of magnesium bromide was charged,The reaction solution was heated to 140 ° C. while stirring.After aging for 2 hours at the same temperature, 0.063 g (0.5 mmol) of iron (II) chloride,3.12 g (10 mmol) of 4,4'-dibromobiphenyl was added,Further aging was carried out for 14 hours at the same temperature. After completion of the reaction,After cooling, water was added to dissolve the salt and liquid separation was carried out. After separating the organic layer,As a result of analysis by GC using the internal standard method,Bis (3-methylphenylphenylamino) biphenyl as a target product was produced in a yield of 51percent. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With copper; potassium carbonate;PEG-6000; In 1,2-dichloro-benzene; for 22h;Heating / reflux; | (Synthetic Example 1) N,N'-diphenyl-N,N'-bis(3-tolyl)-4,4'-diaminobiphenyl (3,3-TPD) was synthesized as follows. 1.0g (2.46mmol) of 4,4'-diiodobiphenyl and 20 ml of o-dichlorobenzene were added to a 100 ml four-necked flask made of glass. Furthermore 1.08g (5.90mmol) of m-methyldiphenylamine, 0.104g of poly(ethylene glycol) PEG-6000 as a reaction accelerator that was available from Wako Pure Chemical Industries, Ltd., 2.73g (0.0198mol) of potassium carbonate and 0.635g (9.87mmol) of powdered copper were added thereto. It was determined for tracing by the high-speed liquid chromatography. And it was stirred and refluxed for 22 hours until no peaks of starting materials and intermediates were determined. It was filtrated at the hot temperature. The product was washed with dichloromethane until color of the filtrate was to be light. The solvent was distilled under reduced pressure. Residual product was purified by silica gel column chromatography to obtain 3,3-TPD that is represented by Compound Example 1. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
80% | With 3 A molecular sieve;[2,2]bipyridinyl; triphenylphosphine; nickel dichloride; zinc; In N,N-dimethyl-formamide; at 60 - 65℃; for 2.16667 - 5.25h; | Charge a dry, nitrogen filled flask with 4.9 g (0.07 mol of zinc powder), 3.4 g (0.01 mol) of triphenylphosphine. 0.4 g (0.002 mol) of 2,2'-bipyridyl, 0.3 g (0.002 mol) of anhydrous NiCl2, 30 mL of dry, deoxygenated DMF, and 2 g of activated 3A molecular sieves. The mixture is heated under nitrogen to 65° C. until the gray color changed to dark brown (about 10-15 minutes). Maintaining a pot temperature of 60° C., a solution of (4-chloro-phenyl)-phenyl-m-tolyl amine (13.4 g, 0.04 mol) in 40 mL of DMF is added dropwise. After addition is over, the reaction is stirred between 60-65° C. for 2-5 hours, until TLC analysis revealed complete consumption of starting aryl chloride. The reaction is diluted with dichloromethane, filtered to remove excess zinc and solids. The filtrate washed four times with water. The dichloromethane layer is dried over sodium sulfate, filtered and concentrated to a reduced volume. The dichloromethane solution is treated with silica gel, filtered, and solution is treated with neutral alumina until the solution is pale yellow. The product is crystallized twice to afford 8.7 g (80percent) of N4,N4'-diphenyl-N4,N4'-di-m-tolyl-biphenyl-4,4'- diamine as a white solid. An analytical sample can be obtained by chromatography using a slow gradient of 0-5percent ethyl acetate in hexane. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
(Synthetic Example 3) The mixture of 3,3-TPD, 4,4-TPD and N,N'-diphenyl-N-(3-tolyl)-N'-(4-tolyl)-4,4'-diaminobiphenyl (3,4-TPD) that is represented by Compound Example 3 was synthesized as follows. Mixture of 438g (2.43mol) of 3-methyldiphenylamine and 49g (0.27mol) of 4-methyldiphenylamine whose mol ratio is 90: 10 were added to a 5000 ml four-necked flask made of glass. Further 28g (4.4mol) of powdered copper was added thereto. It was heated at 30 degrees Centigrade. 450g (1.1mol) of 4,4'-diiodobiphenyl and 47g of poly(ethylene glycol) PEG-6000 that was available from Wako Pure Chemical Industries, Ltd. were added thereto. It was heated at 100 degrees Centigrade, and then 307g (2.2mol) of powdered potassium carbonate was added thereto. It was heated at 205 degrees Centigrade, and stirred for 14 hours. After cooling, DMF was added thereto, and stirred at 130 degrees Centigrade for 1 hour. After cooling till 90 degrees Centigrade, hot water was added thereto. It was stirred for 2 hours. After filtration, filtrated cake was washed with hot water to obtain brown solid. The obtained brown solid was dispersed and stirred into DMF for 1 hour, filtrated and washed with DMF and methanol. The obtained solid was refluxed with activated carbon in xylene for 1 hour. After cooling till 70 degrees Centigrade, it was filtrated. The filtrate was passed through a column packing adsorbent to obtain colorless solution. The solvent was distilled under reduced pressure. Precipitated crystals were filtrated out and dried to obtain 455g of mixture of TPD. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
With potassium hydroxide; copper; In Soltrol/70; at 165℃; for 7h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, and a condensing tube) was communicated with a nitrogen source and contained 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 168 g of potassium hydroxide (3 moles), 122 g of copper powder (1.76 moles) and 224 ml of Soltrol/70.(R). (fatty mixture of C13-C15 purchased from Phillips Chemical Company). The mixture solution was heated to 165° C. for 7 hours and then 2.5 L Soltrol/70.(R). was added. The temperature of the mixture solution was lowered to 154° C. to filter inorganic solids and to obtain a filtering liquid. 2 L of methanol was added to the filtering liquid to accelerate crystallization of the benzidine compounds. Then, the filtering liquid was filtered again to obtain a yellow solid, which is a crude mixture of three types of benzidine compounds. Moreover, 2 L of methanol dissolved the crude mixture of benzidine compounds and filtered by 1.2 Kg of Woelm neutral alumina to obtain a light-yellow solid. Lastly, n-octane was used to dissolve the light-yellow solid and to re-crystallize the benzidine compounds in the form of white crystal. The white crystal weighed 500 g, has a melting point range of 168-170° C., and is a final mixture of the benzidine compounds having high purity. | |
tris-(dibenzylideneacetone)dipalladium(0); 2,2'-bis-(diphenylphosphino)-1,1'-binaphthyl; at 139℃; for 6.5h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, a condensing tube, and a Dean-Stark device) was communicated with a nitrogen source and accommodated 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2.4 L of 10-crown-6-ether, 7.36 g of Pd2(dba)3 (0.008 mole) and 5.0 g 2,2'-bis(diphenylphosphino-1,1'-(binaphthyl) (0.008 mole). The mixture solution was stirred for 30 minutes and heated to a reflux temperature of 139° C. The mixture solution was further stirred to react for 6 hours and had further added thereto 1 L of m-xylene and 1 L of deionized water. The mixture solution was held at 65° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. an m-xylene solution, was removed from the mixture solution, washed with 2 L of deionized water twice and kept at 55° C. The m-xylene solution was filtered by 600 g of Woelm neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 630 g of a crude mixture of benzidine compounds in the form of a yellow solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 595 g, has a melting point range of 169-170° C., and is a final mixture of the benzidine compounds having high purity. | |
With calcium carbonate; zinc;1,10-Phenanthroline; copper diacetate; In xylene; at 120℃; for 10.5h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, and a condensing tube) was communicated with a nitrogen source and contained 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2.4 L of xylene, 27 g of 1,10-phenanthroline (0.14 mole), 420 g of cuprous acetate-monohydrate (2.1 moles), 140 g of zinc (2.1 moles) and 552 g of calcium carbonate (4 moles). The mixture solution was stirred for 30 minutes and heated to 120° C. The mixture solution was further stirred to react for 10 hours and had further added thereto 500 ml of xylene, 500 ml of deionized water and 350 g of acetic acid to neutralize calcium carbonate. The mixture solution was held at 65° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. a xylene solution, was removed from the mixture solution, washed with 1.5 L of deionized water twice and kept at 55° C. The xylene solution was filtered by 500 g of Woelm neutral alumina to obtain a filtering liquid. Then, 1 L of methanol was added to the filtering liquid to accelerate crystallization of benzidine compounds to obtain 595 g crude mixture of benzidine compounds in the form of a white solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 545 g, has a melting point range of 169-170° C., and is a final mixture of the benzidine compounds having high purity |
With potassium hydroxide;1,10-Phenanthroline; copper dichloride; In toluene; at 125℃; for 6.5h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, and a condensing tube) was communicated with a nitrogen source and contained 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 24 L of toluene, 27 g of 1,10-phenanthroline (0.14 mole), 16 g of cuprous chloride (0.14 mole) and 168 g potassium hydroxide (3 moles). The mixture solution was stirred for 30 minutes and heated to 125° C. The mixture solution was further stirred to react for 6 hours and had added thereto 500 ml of toluene, 500 ml of deionized water and 400 g of acetic acid to neutralize the potassium hydroxide. The mixture solution was held at 70° C. and then poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. a toluene solution, was removed from the mixture solution, washed with 1 L of deionized water twice and kept at 60° C. The toluene solution was filtered by 500 g of Woelm neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 605 g of a crude mixture of benzidine compounds in the form of a white solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 500 g, has a melting point range of 169-170° C., and is a final mixture of the benzidine compounds having high purity. | |
With potassium hydroxide;1,10-Phenanthroline; copper dichloride; In m-xylene; at 139℃; for 7.5h;Heating / reflux;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, a condensing tube, and a Dean-Stark device) was communicated with a nitrogen source and accommodated 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2.4 L of m-xylene, 27 g of 1,10-phenanthroline (0.14 mole), 16 g of cuprous chloride (0.14 mole) and 168 g potassium hydroxide (3 moles). The mixture solution was stirred for 30 minutes and heated to a reflux temperature of 139° C. The mixture solution was further stirred to react for 7 hours and had further added thereto 1 L of m-xylene, 1 L of deionized water and 400 g of acetic acid to neutralize the potassium hydroxide. The mixture solution was held at 65° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. an m-xylene solution, was removed from the mixture solution, washed with 2 L of deionized water twice and kept at 55° C. The m-xylene solution was filtered by 600 g of Woelm neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 610 g of a crude mixture of benzidine compounds in the form of a Elite solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 585 g, has a melting point range of 169-170° C., and is a final mixture of the benzidine compounds having high purity. | |
With potassium hydroxide;1,10-Phenanthroline; copper dichloride; In xylene; at 145℃; for 7.5h;Heating / reflux;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, a condensing tube, and a Dean-Stark device) was communicated with a nitrogen source and accommodated 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2.4 L of xylene, 27 g of 1,10-phenanthroline (0.14 mole), 16 g of cuprous chloride (0.14 mole) and 168 g of potassium hydroxide (3 moles). The mixture solution was stirred for 30 minutes and heated to a reflux temperature of 145° C. The mixture solution was further stirred to react for 7 hours and had further added thereto 1 L of o-xylene, 1 L of deionized water and 400 g of acetic acid to neutralize the potassium so hydroxide. The mixture solution was held at 100° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. an o-xylene solution, was removed from the mixture solution, washed with 1.5 L of deionized water twice and kept at 70° C. The o-xylene solution was filtered by 20 g of Alcoa-C neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 615 g of a crude mixture of benzidine compounds in the form of a white solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 600 g, has a melting point range of 168-170° C., and is a final mixture of the benzidine compounds having high purity. | |
With potassium hydroxide; 18-crown-6 ether; copper; In m-xylene; at 139℃; for 10.5h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, and a condensing tube) was communicated with a nitrogen source and contained 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2.4 L of m-xylene (0.14 mole), 150 g of copper powder (2.4 moles), 168 g potassium hydroxide (3 moles) and 35 g of 18-crown-6-ether. The mixture solution was stirred for 30 minutes and heated to a reflux temperature of 139° C. The mixture solution was further stirred to react for 10 hours and had further added thereto 1 L of m-xylene, 1 L of deionized water and 400 g of acetic acid to neutralize the potassium hydroxide. The mixture solution was held at 65° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. an m-xylene solution, was removed from the mixture solution, washed with 2 L of deionized water twice and kept at 55° C. The m-xylene solution was filtered by 600 g of Woelm neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 620 g of a crude mixture of benzidine compounds in the form of a white solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 600 g, has a melting point range of 169-170° C., and is a final mixture of the benzidine compounds having high purity. | |
With potassium hydroxide; copper; In Soltrol/170; at 190℃; for 10.5h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, and a condensing tube) was communicated with a nitrogen source and accommodated 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2 L of Soltrol.(R)./170, 150 g of copper powder (2.4 moles) and 168 g potassium hydroxide (3 moles). The mixture solution was stirred for 30 minutes and heated to 190° C. The mixture solution was further stirred to react for 10 hours and had further added thereto 1 L of toluene, 1.5 L of deionized water and 400 g of acetic acid to neutralize the potassium hydroxide. The mixture solution was held at 65° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. a toluene solution, was removed from the mixture solution, washed with 2 L of deionized water twice and kept at 55° C. The toluene solution was filtered by 500 g of Woelm neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 630 g of a crude mixture of benzidine compounds in the form of a white solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 600 g, has a melting point range of 167-170° C., and is a final mixture of the benzidine compounds having high purity. | |
With sodium t-butanolate;palladium diacetate; tri-tert-butyl phosphine; In xylene; at 125℃; for 5.5h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, a condensing tube, and a Dean-Stark device) was communicated with a nitrogen source and accommodated 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2.5 L of xylene, 0.183 g of Pd(OAc)2 (0.051 mole), 0.14 g of P(t-Bu)3 (0.043 mole) and 350 g NaO-(t-Bu) (3.64 mole). The mixture solution was stirred for 30 minutes and heated to a reflux temperature of 125° C. The mixture solution was further stirred to react for 5 hours and had further added thereto 500 ml of o-xylene and 500 ml of deionized water. The mixture solution was held at 65° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. an o-xylene solution, was removed from the mixture solution, washed with 1 L of deionized water twice and kept at 55° C. The o-xylene solution was filtered by 500 g of Woelm neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 660 g of a crude mixture of benzidine compounds in the form of a white solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 580 g, has a melting point range of 168-170° C., and is a final mixture of the benzidine compounds having high purity. | |
With sodium t-butanolate;tris-(dibenzylideneacetone)dipalladium(0); In toluene; at 110℃; for 5.5h;Product distribution / selectivity; | A 5 L tri-neck round bottom flask (equipped with a mechanical stirrer, a thermal controller, a condensing tube, and a Dean-Stark device) was communicated with a nitrogen source and accommodated 500 g of dibromobiphenyl (1.6 moles), 620 g of 3-methyldiphenylamine (3.4 moles), 50 g of diphenylamine (0.3 mole), 2.4 L of toluene, 7.36 g of Pd2(dba)3 (0.008 mole) (prepared according to J. Org. Chem. 2000,65,p.5330) and 350 g NaO-(t-Bu) (3.64 mole). The mixture solution was stirred for 30 minutes and heated to a reflux temperature of 110° C. The mixture solution was further stirred to react for 5 hours and had further added thereto 500 ml of toluene and 500 ml of deionized water. The mixture solution was held at 55° C. and poured into an extracting bottle to place for 10 minutes until layers of the mixture solution separated. An organic layer, i.e. a toluene solution, was removed from the mixture solution, washed with 2 L of deionized water twice and kept at 55° C. The toluene solution was filtered by using 500 g of Woelm neutral alumina to obtain a filtering liquid. Then, the filtering liquid was dried to obtain 650 g of a crude mixture of benzidine compounds in the form of a yellow solid. Lastly, n-octane was used to dissolve the crude mixture and to re-crystallize the benzidine compounds in the form of pure white crystal. The pure white crystal weighed 550 g, has a melting point range of 169-170° C., and is a final mixture of the benzidine compounds having high purity. |