Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Surveying the scope of aromatic decarboxylations catalyzed by prenylated-flavin dependent enzymes
Anushree Mondal ; Pronay Roy ; Jaclyn Carrannatto , et al. Faraday Discuss.,2024,252,208-222. DOI: 10.1039/D4FD00006D PubMed ID: 38837123
More
Abstract: The prenylated-flavin mononucleotide-dependent decarboxylases (also known as UbiD-like enzymes) are the most recently discovered family of decarboxylases. The modified flavin facilitates the decarboxylation of unsaturated carboxylic acids through a novel mechanism involving 1,3-dipolar cyclo-addition chemistry. UbiD-like enzymes have attracted considerable interest for biocatalysis applications due to their ability to catalyse (de)carboxylation reactions on a broad range of aromatic substrates at otherwise unreactive carbon centres. There are now ~35[thin space (1/6-em)]000 protein sequences annotated as hypothetical UbiD-like enzymes. Sequence similarity network analyses of the UbiD protein family suggests that there are likely dozens of distinct decarboxylase enzymes represented within this family. Furthermore, many of the enzymes so far characterized can decarboxylate a broad range of substrates. Here we describe a strategy to identify potential substrates of UbiD-like enzymes based on detecting enzyme-catalysed solvent deuterium exchange into potential substrates. Using ferulic acid decarboxylase (FDC) as a model system, we tested a diverse range of aromatic and heterocyclic molecules for their ability to undergo enzyme-catalysed H/D exchange in deuterated buffer. We found that FDC catalyses H/D exchange, albeit at generally very low levels, into a wide range of small, aromatic molecules that have little resemblance to its physiological substrate. In contrast, the sub-set of aromatic carboxylic acids that are substrates for FDC-catalysed decarboxylation is much smaller. We discuss the implications of these findings for screening uncharacterized UbiD-like enzymes for novel (de)carboxylase activity.
Purchased from AmBeed: 27916-43-4 ; 2438-05-3 ; 501-89-3 ; 42287-94-5 ; 776-79-4 ; 53473-36-2 ; 7251-61-8 ; 42287-97-8 ; 1621-91-6 ; 37718-11-9 ; 288-13-1 ; 86-73-7 ; 104-53-0 ; 2018-90-8 ; 87-66-1 ; 135-19-3 ; 1664-57-9 ; 289-80-5 ; 693-95-8 ; 55-22-1 ; 102-93-2 ; 1477-50-5 ; 1632-76-4 ; 4780-79-4 ; 16642-79-8 ; 3581-89-3 ; 501-97-3 ; 771-50-6 ; 98-98-6 ; 619-64-7 ; 100-51-6 ; 402-45-9 ; 59-67-6 ; 93-60-7 ; 273-53-0 ; 2084-13-1 ; 51-17-2 ; 2459-09-8 ; 2459-07-6 ; 95-16-9 ; 459-31-4 ; 90-05-1 ; 150-76-5 ; 103-25-3 ; 271-44-3 ; 6293-56-7 ; 2550-26-7 ; 288-32-4 ; 501-52-0 ; 2001-32-3 ; 1592-38-7 ; 95-15-8 ; 91-19-0 ; 1122-61-8 ; 3724-19-4 ; 20173-24-4 ; 118-31-0 ; 6125-24-2 ; 60-12-8 ; 90-15-3 ; 120-72-9 ; 822-36-6 ; 288-47-1 ; 288-42-6 ; 2038-57-5 ; 38628-51-2 ; 1929-29-9 ; 15009-91-3 ; 1505-50-6 ; 581-40-8 ; 616-47-7 ; 1571-33-1 ...More
CAS No. : | 619-64-7 | MDL No. : | MFCD00002570 |
Formula : | C9H10O2 | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | ZQVKTHRQIXSMGY-UHFFFAOYSA-N |
M.W : | 150.17 | Pubchem ID : | 12086 |
Synonyms : |
|
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H315-H319-H335 | Packing Group: | N/A |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
platinum (IV) oxide; platinum; In acetic acid; | a) 4-ethylcyclohexanecarboxylic acid To a solution of 4-ethylbenzoic acid (10 g) in acetic acid (150 ml) was added platinum(IV) oxide (1.0 g), and the mixture was stirred at room temperature under a hydrogen atmosphere at 3 atm for 3 hr. The platinum catalyst was filtered off through a Celite pad, and the filtrate was concentrated to give the title compound (10.0 g). |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
20% | With trichlorophosphate; In acetonitrile; at 100℃; for 0.5h; | POCI3 (44 mu, 0.470 mmol) was added to <strong>[369-26-6]methyl 3-amino-4-fluorobenzoate</strong> (53.0 mg, 0.313 mmol) and 4-ethylbenzoic acid (47.0 mg, 0.313 mmol) in MeCN (2 ml) and the mixture was heated at 100 °C for 30 min. Solvents were evaporated and residue purified by flash chromatography using 10-20percent) EtOAc in hexanes. Yield: 18.5 mg (20percent>); white solid. The amide from above (18.5 mg, 0.061 mmol) and Lawesson's reagent (32 mg, 0.078 mmol) in toluene (2 ml) was heated at 110 °C for 2 d. Solvent was evaporated and residue purified by flash chromatography using 20-35percent EtOAc in hexanes as eluent. Yield: 7.1 mg (39percent). Hydroxylamine potassium salt in MeOH (ca 1.7 M, 1.5 ml) was added to the ester from above and the mixture was heated at 60 °C for 45 min before quenched with AcOH (0.5 ml). The title compound was isolated by reversed phase chromatography (Kinetex CI 8, 5 muiotaeta, 21.2 x 100 mm, flow 25 ml/min, gradient 0.1percent TFA in water / acetonitrile over 15 minutes). Yield; 5.1 mg (72percent); white solid. |