Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Jacob Silzel ; Chengwei Chen ; Colomba Sanchez-Marsetti , et al. ChemRxiv,2024. DOI: 10.26434/chemrxiv-2024-bthcz
More
Abstract: Cysteine is the most reactive naturally occurring amino acid due to the presence of a free thiol, presenting a tantalizing handle for covalent modification of peptides/proteins. Although many mass spectrometry experiments could benefit from site-specific modification of Cys, the utility of direct arylation has not been thoroughly explored. Recently, Spokoyny and coworkers reported a Au(III) organometallic reagent that robustly arylates Cys and tolerates a wide variety of solvents and conditions. Given the chromophoric nature of aryl groups and the known susceptibility of carbon-sulfur bonds to photodissociation, we set out to identify an aryl group that could efficiently cleave Cys carbon-sulfur bonds at 266 nm. A streamlined workflow was developed to facilitate rapid examination of a large number of aryls with minimal sample using a simple test peptide, RAAACGVLK. We were able to identify several aryl groups that yield abundant homolytic photodissociation of the adjacent Cys carbon-sulfur bonds with short activation times (<10 ms). In addition, we characterized the radical products created by photodissociation by subjecting the product ions to further collisional activation. Finally, we tested Cys arylation with human hemoglobin, identified reaction conditions that facilitate efficient modification of intact proteins, and evaluated the photochemistry and activation of these large radical ions.
Keywords: Fragmentation ; photodissociation ; radical-directed dissociation ; cysteine modification
Purchased from AmBeed: 15854-87-2 ; 615-43-0 ; 5029-67-4 ; 1120-90-7 ; 540-37-4
CAS No. : | 540-37-4 | MDL No. : | MFCD00007848 |
Formula : | C6H6IN | Boiling Point : | - |
Linear Structure Formula : | I(C6H4NH2) | InChI Key : | VLVCDUSVTXIWGW-UHFFFAOYSA-N |
M.W : | 219.02 | Pubchem ID : | 10893 |
Synonyms : |
|
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H302-H315-H319-H335 | Packing Group: | N/A |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
70% | Stage #1: at 20℃; Cooling with ice Stage #2: With ammonium hydroxide In water |
General procedure: A mixture of 0.1 mol of 4-substituted aniline and 0.1 mol of Potassium thiocyanate (KCNS) in 100 ml glacial acetic acid (AcOH) was cooled in an ice bath and stirred for 10-20 min, and then 0.1 mol bromine in glacial acetic acid was added dropwise at such a rate to keep the temperature below 10 °C throughout the addition. The reaction mixture was stirred at room temperature for 2-4 h, the hydrobromide (HBr) salt thus separated out was filtered, washed with acetic acid, dried, dissolved in hot water and basified to pH 11.0 with ammonia solution (NH4OH) and the resulting precipitate was filtered, washed with water and dried to get the desired product 3a-k. The progress of the reaction was monitored by Thin Layer Chromatography using toluene: acetone (8:2) solvent system. |