成人免费xx,国产又黄又湿又刺激不卡网站,成人性视频app菠萝网站,色天天天天

Home Cart 0 Sign in  

[ CAS No. 50820-65-0 ] {[proInfo.proName]}

,{[proInfo.pro_purity]}
Cat. No.: {[proInfo.prAm]}
Chemical Structure| 50820-65-0
Chemical Structure| 50820-65-0
Structure of 50820-65-0 * Storage: {[proInfo.prStorage]}

Please Login or Create an Account to: See VIP prices and availability

Cart0 Add to My Favorites Add to My Favorites Bulk Inquiry Inquiry Add To Cart

Search after Editing

* Storage: {[proInfo.prStorage]}

* Shipping: {[proInfo.prShipping]}

Quality Control of [ 50820-65-0 ]

Related Doc. of [ 50820-65-0 ]

Alternatived Products of [ 50820-65-0 ]
Product Citations

Product Details of [ 50820-65-0 ]

CAS No. :50820-65-0 MDL No. :MFCD00211063
Formula : C10H9NO2 Boiling Point : No data available
Linear Structure Formula :- InChI Key :AYYOZKHMSABVRP-UHFFFAOYSA-N
M.W : 175.18 Pubchem ID :639844
Synonyms :

Calculated chemistry of [ 50820-65-0 ]      Expand+

Physicochemical Properties

Num. heavy atoms : 13
Num. arom. heavy atoms : 9
Fraction Csp3 : 0.1
Num. rotatable bonds : 2
Num. H-bond acceptors : 2.0
Num. H-bond donors : 1.0
Molar Refractivity : 49.58
TPSA : 42.09 ?2

Pharmacokinetics

GI absorption : High
BBB permeant : Yes
P-gp substrate : No
CYP1A2 inhibitor : Yes
CYP2C19 inhibitor : No
CYP2C9 inhibitor : No
CYP2D6 inhibitor : No
CYP3A4 inhibitor : No
Log Kp (skin permeation) : -6.02 cm/s

Lipophilicity

Log Po/w (iLOGP) : 1.89
Log Po/w (XLOGP3) : 1.9
Log Po/w (WLOGP) : 1.95
Log Po/w (MLOGP) : 1.38
Log Po/w (SILICOS-IT) : 2.36
Consensus Log Po/w : 1.9

Druglikeness

Lipinski : 0.0
Ghose : None
Veber : 0.0
Egan : 0.0
Muegge : 1.0
Bioavailability Score : 0.55

Water Solubility

Log S (ESOL) : -2.5
Solubility : 0.55 mg/ml ; 0.00314 mol/l
Class : Soluble
Log S (Ali) : -2.41
Solubility : 0.687 mg/ml ; 0.00392 mol/l
Class : Soluble
Log S (SILICOS-IT) : -3.36
Solubility : 0.0772 mg/ml ; 0.000441 mol/l
Class : Soluble

Medicinal Chemistry

PAINS : 0.0 alert
Brenk : 0.0 alert
Leadlikeness : 1.0
Synthetic accessibility : 1.36

Safety of [ 50820-65-0 ]

Signal Word:Warning Class:
Precautionary Statements:P261-P305+P351+P338 UN#:
Hazard Statements:H315-H319-H335 Packing Group:
GHS Pictogram:

Application In Synthesis of [ 50820-65-0 ]

* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.

  • Downstream synthetic route of [ 50820-65-0 ]

[ 50820-65-0 ] Synthesis Path-Downstream   1~2

  • 1
  • [ 50820-65-0 ]
  • [ 1670-82-2 ]
YieldReaction ConditionsOperation in experiment
95% With lithium hydroxide monohydrate; In tetrahydrofuran; methanol; water; (c) A solution of <strong>[50820-65-0]methyl indole-6-carboxylate</strong> (11.0 g) in a mixture of tetrahydrofuran (150 ml), methanol (150 ml), and water (63 ml) was treated with lithium hydroxide monohydrate (15.8 g). The mixture was stirred at 60 C. for 6 hours and then concentrated to remove the organic solvents. The residue was dissolved in water, and the solution was acidified with 50% (v/v) hydrochloric acid. The precipitate which formed was collected by filtration and dried to give indole-6-carboxylic acid (9.6 g, 95%) as a tan powder; mp 253-254: NMR (80 MHz; CDCl3) 6.51(m, 1H, H3 -indole), 8.04(m, 1H, H7 -indole), 11.43(broad s, 1H, NH), 12.42(broad s, 1H, OH).
95% With lithium hydroxide monohydrate; In tetrahydrofuran; methanol; water; (c) A solution of <strong>[50820-65-0]methyl indole-6-carboxylate</strong> (11.0 g) in a mixture of tetrahydrofuran (150 ml), methanol (150 ml), and water (63 ml) was treated with lithium hydroxide monohydrate (15.8 g). The mixture was stirred at 60C for 6 hours and then concentrated to remove the organic solvents. The residue was dissolved in water, and the solution was acidified with 50% (v/v) hydrochloric acid. The precipitate which formed was collect by filtration and dried to give indole-6-carboxylic acid (9.6 g, 95%) as a tan powder; mp 253-254; NMR (80 MHz; CDCl3): 6.51(m, 1H, H3-indole), 8.04(m, 1H, H7-indole), 11.43(broad s, 1H, NH), 12.42(broad s, 1H, OH).
88% Step 1: Lithium hydroxide (0.72 g, 17.2 mmol, 3 equiv.) in water (10 mL) was added to <strong>[50820-65-0]methyl indole-6-carboxylate</strong> (1 g, 5.7 mmol, 1 equiv.) in tetrahydrofuran (10 mL) and the mixture stirred at 80 C. for 16 hours. The solution was concentrated under vacuum then diluted with dichloromethane (10 mL) and the organic layer extracted with water (3×10 mL). The aqueous phase was acidified to pH<1 with concentrated HCl forming a precipitate. The precipitate was filtered and washed with 1 M aqueous HCl (3×10 mL) to afford 1H-indole-6-carboxylic acid as a white solid, 0.807 g (88% yield). LC (at)215 nm; Rt 1.02: 100%, m/z (ES+): 162 (M+H+.); δH (400 MHz; MeOD) 8.15 (1H, d), 7.72 (1H, m), 7.67 (1H, m), 7.45 (1H, m), 6.53 (1H, m).
85% To a solution of <strong>[50820-65-0]methyl indole-6-carboxylate</strong> (3.0 g) in MeOH (34 mL), a 3M aqueous solution of LiOH (17 mL, 3.0 equiv.) was added. The reaction mixture was heated at reflux for 1 Hr, then cooled at 0C, diluted with water (50 mL) and acidified with HCl 12M (5 mL). The mixture was extracted with AcOEt (3*30 mL). The combined organic layers were washed with brine (30 mL), dried over MgSO4 and concentrated to give the product as a yellow solid (2.3 g, 85%). M/Z (M+H)+ = 162.
57% Step 4. 1H-Indole-6-carboxylic acid A solution of <strong>[50820-65-0]methyl 1H-indole-6-carboxylate</strong> (1.3 g, 7.43 mmol, 1.00 equiv) in tetrahydrofuran (20 mL) was placed into a 250-mL round-bottom flask. Then CH3OH (20 mL), H2O (10 mL), LiOH.H2O (1.9 g, 45.24 mmol, 6.09 equiv) were added. The resulting solution was stirred overnight at 60 C. The resulting mixture was concentrated in vacuo, and diluted with water. The resulting solution was extracted with 2*100 mL of ether and the aqueous layers were combined. The pH value of the solution was adjusted to pH 3 with hydrochloric acid, and the solids were collected by filtration. This resulted in 0.68 g (57%) of 1H-indole-6-carboxylic acid as a light yellow solid.

  • 2
  • [ 104447-80-5 ]
  • [ 50820-65-0 ]
YieldReaction ConditionsOperation in experiment
85% In tetrahydrofuran; palladium; ethyl acetate; b. Methyl indole-6-carboxylate A solution of methyl E-4-(2-dimethylaminovinyl)-3-nitrobenzoate (5.58 g) in tetrahydrofuran (100 ml) was hydrogenated at 3.45 bar in the presence of 10% (w/w) palladium on carbon (1.1 g) for 35 min. The catalyst was removed by filtration through diatomaceous earth and the filtrate was evaporated. The residue was dissolved in ethyl acetate and the solution obtained was washed successively with 10% (v/v) hydrochloric acid, water, and brine; then dried (MgSO4) and evaporated to give methyl indole-6-carboxylate (3.32 g, 85%) as a white solid; NMR (80 MHz, CDCl3): 3.92(s, 3H, OCH3), 6.57(m, 1H, H3 -indole), 7.32(t, 1H, H2 -indole), 7.10(d, 1H, H4 -indole), 7.87(dd, 1H, H5 -indole), 8.16(broad s, 1H, H7 -indole).
85% In tetrahydrofuran; palladium; ethyl acetate; (b) A solution of methyl E-4-(2-dimethylaminovinyl)-3-nitrobenzoate (5.58 g) in tetrahydrofuran (100 ml) was hydrogenated at 3.45 bar in the presence of 10% (w/w) palladium on carbon (1.1 g) for 35 minutes. The catalyst was removed by filtration through diatomaceous earth and the filtrate was evaporated. The residue was dissolved in ethyl acetate and the solution obtained was washed successively with 10% (v/v) hydrochloric acid, water, and brine, then dried (MgSO4) and evaporated to give methyl indole-6-carboxylate (3.32 g, 85%) as a white solid; NMR (80 MHz, CDCl3) 3.92(s, 3H, OCH3), 6.57(m, 1H, H3 -indole), 7.32(t, 1H, H2 -indole), 7.10(d, 1H, H4 -indole), 7.87(dd, 1H, H5 -indole), 8.16(broad s, 1H, H7 -indole).
85% In tetrahydrofuran; palladium; ethyl acetate; (b) A solution of methyl E-4-(2-dimethylaminovinyl)-3-nitrobenzoate (5.58 g) in tetrahydro-furan (100 ml) was hydrogenated at 3.45 bar in the presence of 10% (w/w) palladium on carbon (1.1 g) for 35 minutes. The catalyst was removed by filtration through diatomaceous earth and the filtrate was evaporated. The residue was dissolved in ethyl acetate and the solution obtained was washed successively with 10% (v/v) hydrochloric acid, water, and brine, then dried (MgSO4) and evaporated to give methyl indole-6-carboxylate (3.32 g, 85%) as a white solid; NMR (80 MHz, CDCl3): 3.92(s, 3H, OCH3), 6.57(m, 1H, H3-indole), 7.32(t, 1H, H2-indole), 7.10(d, 1H, H4-indole), 7.87(dd, 1H, H5-indole), 8.16(broad s, 1H, H7-indole).
84% With hydrogen;palladium on activated charcoal; In tetrahydrofuran; at 20℃; Step 3. Methyl 1H-indole-6-carboxylate A solution of (E)-methyl 4-(2-(dimethylamino)vinyl)-3-nitrobenzoate (2.2 g, 8.80 mmol, 1.00 equiv) in tetrahydrofuran (50 mL) was placed into a 100-mL round-bottom flask. Then 2.4 g of palladium on carbon was added. An atmosphere of hydrogen gas was placed over the contents of the flask, and the reaction was stirred overnight at room temperature. Then the solids were filtered off, and the resulting mixture was concentrated in vacuo. This resulted in 1.3 g (84%) of methyl 1H-indole-6-carboxylate as brown oil.
With sodium dithionite; In tetrahydrofuran; ethanol; water; Production Example 5 6-methoxycarbonylindole To a mixed solvent of tetrahydrofuran (30 ml), ethanol (30 ml) and water (100 ml), added are methyl E-4-(2-dimethylaminovinyl)-3-nitrobenzoate (10.0 g) and sodium hydrosulfite (104.5 g), and stirred at 70 C. for 1 hours. After this is cooled to room temperature, a saturated saline solution is added thereto. Then, this is extracted with chloroform. The organic layer is dried, and the solvent is evaporated away. The resulting residue is purified through silica gel column chromatography (eluent: hexane/ethyl acetate=2/1 to 1/1) to obtain 6-methoxycarbonylindole (2.79 g). 1H-NMR (CDCl3, δ): 3.93 (3H, s), 6.60 (1H, s), 7.37 (1H, m), 7.66 (1H, d, J=8.3 Hz), 7.81 (1H, dd, J=1.3 and 8.3 Hz), 8.17 (1H, s), 8.52 (1H, brs).
palladium-carbon; In tetrahydrofuran; EXAMPLE 1 Methyl 6-indolecarboxylate STR8 16.7 g (0.060 mol) of methyl 4-(2-dimethylaminoethenyl)-3-nitrobenzoate [prepared according to the general working procedure of L. F. Tietze and Th. Eicher, "Reaktionen und Synthesen" (Reactions and Syntheses), p. 172, Thieme, Stuttgart 1981] were hydrogenated in 300 ml of tetrahydrofuran containing 1.1 g of palladium carbon (10%). The solution was filtered for 2 hours through kieselguhr and the catalyst was washed with 50 ml of tetrahydrofuran. The solvent was removed in vacuo. In order to remove a small amount of impurity (methyl 3-amino-4-methylbenzoate), the product was washed successively with 10% strength hydrochloric acid, water and concentrated sodium chloride solution, dried over magnesium sulphate and concentrated on a rotary evaporator. Yield: 9.9 g (94% of theory) of yellow crystals Rf (CH2 Cl2)=0.38 Rf (CH2 Cl2, 5% MeOH)=0.53

Recommend Products
Same Skeleton Products

Technical Information

Historical Records

Related Functional Groups of
[ 50820-65-0 ]

Esters

Chemical Structure| 1011-65-0

[ 1011-65-0 ]

Methyl 1H-indole-5-carboxylate

Similarity: 1.00

Chemical Structure| 184150-96-7

[ 184150-96-7 ]

Methyl 2-methyl-1H-indole-6-carboxylate

Similarity: 0.98

Chemical Structure| 32996-16-0

[ 32996-16-0 ]

Ethyl 1H-indole-5-carboxylate

Similarity: 0.97

Chemical Structure| 880360-85-0

[ 880360-85-0 ]

Methyl 2-formyl-1H-indole-5-carboxylate

Similarity: 0.97

Chemical Structure| 184151-49-3

[ 184151-49-3 ]

Methyl 3-methyl-1H-indole-6-carboxylate

Similarity: 0.97

Related Parent Nucleus of
[ 50820-65-0 ]

Indoles

Chemical Structure| 1011-65-0

[ 1011-65-0 ]

Methyl 1H-indole-5-carboxylate

Similarity: 1.00

Chemical Structure| 184150-96-7

[ 184150-96-7 ]

Methyl 2-methyl-1H-indole-6-carboxylate

Similarity: 0.98

Chemical Structure| 32996-16-0

[ 32996-16-0 ]

Ethyl 1H-indole-5-carboxylate

Similarity: 0.97

Chemical Structure| 880360-85-0

[ 880360-85-0 ]

Methyl 2-formyl-1H-indole-5-carboxylate

Similarity: 0.97

Chemical Structure| 184151-49-3

[ 184151-49-3 ]

Methyl 3-methyl-1H-indole-6-carboxylate

Similarity: 0.97

; ;