Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Humic substances sorption from wastewater on the biochar produced from the waste materials
Dud?o, Agnieszka ; Michalska, Justyna ; Turek-Szytow, Jolanta , et al. J. Environ. Manage.,2024,370,122366. DOI: 10.1016/j.jenvman.2024.122366 PubMed ID: 39243649
More
Abstract: In recent years, increasing attention has been paid to the possibility of converting waste materials, e.g. manure, bio-waste, green waste, waste from the water and sewage industries (e.g. post-fermentation sludge), and agrifood waste into biochars (BCs) by pyrolysis. The ability of biochar to improve soil health and fertility is driving growing interest in its use as a soil amendment. A high soil stability of BCs and their excellent nutrient sorption properties are the main reasons for the superiority of such materials over other organic soil amendments. In addition, BCs can retain soil-relevant compounds, including humic substances (HSs). Since most of the resources used to produce humic fertilisers are non-renewable, the effluent from anaerobic digestion of sewage sludge (reject water, RW), which contains high levels of HSs, is considered a promising target for their recovery. In this study, the potential of ten BCs derived from pine, oak, straw, sunflower, and digestate at different pyrolysis temperatures for the recovery of HSs from RW was evaluated. The sorption of HSs on the applied BCs was conducted using contact method for 24 h and then determined spectrophotometrically. The most effective sorbents for HSs from RW were BCs obtained from straw in the low and high temperatures with the sorption capacity of 3.10 mg g-1 and 5.31 mg g-1, respectively. It was observed that the BCs produced from the same biomass at different pyrolysis temperatures had different sorption capacities for FA, HA, and a mixture of these compounds. The results indicated that BCs obtained from sunflower at different temperatures and oak at high temperature were the most promising sorbents for the recovery of HSs from RW. Such materials have the potential to be applied to soil and were selected for further evaluation due to their ability to enhance soil quality and immobilize pollutants. Further studies will assess their effectiveness in different soil conditions, their stability and persistence, and their impact on plant health and growth.
Keywords: Fulvic acids ; Humic acids ; Sorption ; Biochar ; UV-Vis
Purchased from AmBeed: 479-66-3
CAS No. : | 479-66-3 | MDL No. : | MFCD09838488 |
Formula : | C14H12O8 | Boiling Point : | No data available |
Linear Structure Formula : | - | InChI Key : | FCYKAQOGGFGCMD-UHFFFAOYSA-N |
M.W : | 308.24 | Pubchem ID : | 5359407 |
Synonyms : |
|
Chemical Name : | 3,7,8-Trihydroxy-3-methyl-10-oxo-1,3,4,10-tetrahydropyrano[4,3-b]chromene-9-carboxylic acid |
Signal Word: | Warning | Class: | |
Precautionary Statements: | P280 | UN#: | |
Hazard Statements: | H302-H312-H332 | Packing Group: | |
GHS Pictogram: |