* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
diisopropyl (6-(pyrrolidin-1-yl)pyridin-3-yl)phosphonate[ No CAS ]
Yield
Reaction Conditions
Operation in experiment
69%
With triphenylphosphine; palladium dichloride; silver(l) oxide; at 100℃; for 2.0h;Inert atmosphere;
General procedure: A dried glass reaction tube equipped with a magnetic stir bar was charged with PdCl2 (15.9 mg,0.09 mmol, 15 mol %), PPh3 (314.7 mg, 1.2 mmol, 200mol %), Ag2O (278.1 mg, 1.2 mmol, 200 mol %), aryl (hetero)boronic acid (0.72 mmol, 1.2 equiv) and phosphite ester (0.6 mmol, 1.0 equiv), DMA(3.0 mL, without any purification) was added and the mixture was charged with N2 three times. The reaction mixture was then stirred at 100 C under N2 for 2h. The reaction progress was monitored by TLC. After cooling to room temperature, the reaction mixture was filtered through a pad of celite, and washed with ethyl acetate. The yields of standard reaction were obtained by HPLC. The combined organic solvent was concentratedin vacuo. The residue was purified by silica gel flash chromatography to produce the desired product.
diisopropyl thieno[2,3-b]pyridin-5-ylphosphonate[ No CAS ]
Yield
Reaction Conditions
Operation in experiment
80%
With triphenylphosphine; palladium dichloride; silver(l) oxide; at 100.0℃; for 2.0h;Inert atmosphere;
General procedure: A dried glass reaction tube equipped with a magnetic stir bar was charged with PdCl2 (15.9 mg,0.09 mmol, 15 mol %), PPh3 (314.7 mg, 1.2 mmol, 200mol %), Ag2O (278.1 mg, 1.2 mmol, 200 mol %), aryl (hetero)boronic acid (0.72 mmol, 1.2 equiv) and phosphite ester (0.6 mmol, 1.0 equiv), DMA(3.0 mL, without any purification) was added and the mixture was charged with N2 three times. The reaction mixture was then stirred at 100 C under N2 for 2h. The reaction progress was monitored by TLC. After cooling to room temperature, the reaction mixture was filtered through a pad of celite, and washed with ethyl acetate. The yields of standard reaction were obtained by HPLC. The combined organic solvent was concentratedin vacuo. The residue was purified by silica gel flash chromatography to produce the desired product.