Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
Intrinsic (Trap-Free) Transistors Based on Epitaxial Single-Crystal Perovskites
Vladimir Bruevich ; Leila Kasaei ; Sylvie Rangan , et al. Adv. Mater.,2022,34(43):2205055. DOI: 10.1002/adma.202205055 PubMed ID: 36026556
More
Abstract: The first experimental realization of the intrinsic (not dominated by defects) charge conduction regime in lead-halide perovskite field-effect transistors (FETs) is reported. The advance is enabled by: i) a new vapor-phase epitaxy technique that results in large-area single-crystalline cesium lead bromide (CsPbBr3) films with excellent structural and surface properties, including atomically flat surface morphology, essentially free from defects and traps at the level relevant to device operation; ii) an extensive materials analysis of these films using a variety of thin-film and surface probes certifying the chemical and structural quality of the material; and iii) the fabrication of nearly ideal (trap-free) FETs with characteristics superior to any reported to date. These devices allow the investigation of the intrinsic FET and (gated) Hall-effect carrier mobilities as functions of temperature. The intrinsic mobility is found to increase on cooling from ≈30 cm2 V?1 s?1 at room temperature to ≈250 cm2 V?1 s?1 at 50 K, revealing a band transport limited by phonon scattering. Establishing the intrinsic (phonon-limited) mobility provides a solid test for theoretical descriptions of carrier transport in perovskites, reveals basic limits to the technology, and points to a path for future high-performance perovskite electronic devices.
Purchased from AmBeed: 1785-64-4
CAS No. : | 1785-64-4 | MDL No. : | MFCD13195584 |
Formula : | C16H8F8 | Boiling Point : | - |
Linear Structure Formula : | - | InChI Key : | GUHKMHMGKKRFDT-UHFFFAOYSA-N |
M.W : | 352.22 | Pubchem ID : | 11739627 |
Synonyms : |
|
Signal Word: | Warning | Class: | N/A |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | N/A |
Hazard Statements: | H315-H319-H335 | Packing Group: | N/A |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.