Purity | Size | Price | VIP Price | USA Stock *0-1 Day | Global Stock *5-7 Days | Quantity | ||||||
{[ item.p_purity ]} | {[ item.pr_size ]} | Inquiry |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,item.pr_rate,1,item.pr_is_large_size_no_price) ]} |
{[ getRatePrice(item.pr_usd, 1,1,item.pr_is_large_size_no_price) ]} | Inquiry {[ getRatePrice(item.pr_usd,item.pr_rate,item.mem_rate,item.pr_is_large_size_no_price) ]} {[ getRatePrice(item.pr_usd,1,item.mem_rate,item.pr_is_large_size_no_price) ]} | {[ item.pr_usastock ]} | in stock Inquiry - | {[ item.pr_chinastock ]} | {[ item.pr_remark ]} in stock Inquiry - | Login | Inquiry |
Please Login or Create an Account to: See VIP prices and availability
CAS No. : | 1714-29-0 | MDL No. : | MFCD00015767 |
Formula : | C16H9Br | Boiling Point : | No data available |
Linear Structure Formula : | - | InChI Key : | HYGLETVERPVXOS-UHFFFAOYSA-N |
M.W : | 281.15 | Pubchem ID : | 159627 |
Synonyms : |
|
Signal Word: | Warning | Class: | |
Precautionary Statements: | P261-P305+P351+P338 | UN#: | |
Hazard Statements: | H315-H319-H335 | Packing Group: | |
GHS Pictogram: |
* All experimental methods are cited from the reference, please refer to the original source for details. We do not guarantee the accuracy of the content in the reference.
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
99% | With sodium carbonate;tetrakis(triphenylphosphine) palladium(0); In 1,2-dimethoxyethane; water; for 8h;Heating / reflux; | (Synthesis of Compound (AN-2)) (1) Synthesis of Intermediate [1-bromo-6-(4-naphthalene-1-yl-phenyl) pyrene] 7.4 g of 4-(naphthalene-1-yl) phenyl boronic acid prepared by a well known method and 7.0 g of conventional 1-bromopyrene were dissolved in 80 ml of dimethoxyethane (DME). Subsequently, 0.58 g of tetrakistriphenylphosphine palladium and 40 ml of 2M-sodium carbonate aqueous solution were added therein, followed by argon displacement. After heating and refluxing over 8 hours, it was stood to cool and then an organic layer was extracted therefrom by toluene. The organic layer was washed by saturated salt water, followed by drying through anhydrous sodium sulfate, and then the organic solvent was removed by an evaporator. The residue was refined through a silica gel chromatography (a developing solvent: toluene) and then 10.0 g of 1-(4-naphthalene-1-yl-phenyl) pyrene was obtained. (yield: 99 %) 10.0 g of 1-(4-naphthalene-1-yl-phenyl)pyrene obtained was dispersed into 100 ml of dimethyl formaldehyde (DMF), and 5.3 g N-bromosuccinamide (NBS) in DMF solution was dropped therein at room temperature. After stirred over 5 hours, it was left around overnight. After the overnight, 150 ml of water was added to it and the deposited crystal was filtrated, followed by water and ethanol washing of the crystal. The crystal obtained was refined through a silica gel chromatography (a developing solvent: hexane / toluene = 2 / 1) and then 4.5 g of 1-bromo-6-(4-naphthalene-1-yl-phenyl)pyrene (the yield: 38%) and 3.8 g of 1-bromo-8-(4-naphthalene-1-yl-phenyl)pyrene were obtained (the yield: 32%) as the intermediates. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
24 g | With tris-(dibenzylideneacetone)dipalladium(0); tri-tert-butyl phosphine; sodium t-butanolate; In toluene; at 23℃;Inert atmosphere; | To a mixture of 21-bromopyrene (21.2 g, 75.3 mmole), 3-tert- butylaniline (12.3 g, 82.4 mmole) in toluene (280 ml) was added Pd2(dba)3 (1.1 g, 1.2 mmole) and tri-tert-butyl-phosphine (0.49 g, 2.4 mmole) followed by addition of sodium tert-butoxide (8.7 g, 90.5 mmole). Resulting mixture was stirred at ambient temperature under nitrogen atmosphere overnight. After that the mixture was stirred with water (20 ml), organic phase passed through a filter filled with basic alumina, Florisil?, silica gel and Celite? eluting with toluene. Toluene evaporated, the reside dissolved in hexanes and precipitate collected after 1 day to give 24 g of the product that was used for the next step without further purification.1H-NMR (toluene-d8, 500 MHz): 1.29 (s, 9H), 5.69 (s, 1H), 6.77 (dd, 1H, J1 = 2 Hz, J2 = 8 Hz), 6.96 (d, 1H, J = 8 Hz), 7.07 (t, 1H, J = 1.5 Hz), 7.15 (t, 1H, J = 8 Hz), 7.73-7.83 (m, 6H), 7.90 (d, 2H, J = 8 Hz), 7.92 (d, 1H, J = 9 Hz), . MS: MH+ = 350. |
Yield | Reaction Conditions | Operation in experiment |
---|---|---|
3.3 g | With (3-phenylallyl)(chloro)-[1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazol-2-ylidene]palladium(II); tetrabutylammomium bromide; potassium carbonate; In water; for 2h;Reflux; Inert atmosphere; | In a nitrogen atmosphere, <strong>[890042-13-4]4,4,5,5-tetramethyl-2-(triphenylen-2-yl)-1,3,2-dioxaborolane</strong> (3.0 g), 1-bromopyrene (2.2 g), chlorophenylallyl [1,3-bis(2,6-diisopropylphenyl) imidazol-2-ylidene] palladium(II) (25 mg) as a palladium catalyst, potassium carbonate (2.2 g), tetrabutylammonium bromide (TBAB, 0.8 g), cyclopentyl methyl ether (CPME, 20 mL), and water (2 mL) were put in a flask and heated and stirred at a reflux temperature for two hours. After the reaction, the reaction solution was cooled. Water was added thereto, and the resulting mixture was stirred. Thereafter, the precipitate was filtered. The precipitate was dried, then heated and dissolved in chlorobenzene, and then filtered through a silica gel short pass column (eluent: toluene). The eluate was concentrated to obtain a solid. The solid was filtered and dried, and then subjected to sublimation purification to obtain compound (2-350) (3.3 g). The structure of compound ( 2-350) thus obtained was identified by NMR measurement. 1H-NMR (CDCl3): 7.6 to 7.7 (m, 4H), 7.9 (dd, 1H), 8.0 (m, 2H), 8.1 to 8.2 (m, 4H), 8.2 (m, 1H), 8.3 (m, 2H), 8.7 to 8.8 (m, 4H), 8.8 (d, 1H), 8.9 (d, 1H) |